ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 福島医学会
  2. Fukushima Journal of Medical Science
  3. Vol.68 (2022)

Impact of general practice / family medicine clerkships on Japanese medical students: Using text mining to analyze reflective writing

https://fmu.repo.nii.ac.jp/records/2002038
https://fmu.repo.nii.ac.jp/records/2002038
8bb9da9d-8176-4fb8-a286-8ffa128a7beb
名前 / ファイル ライセンス アクション
FksmJMedSci_68_p19.pdf FksmJMedSci_68_p19.pdf (743.0 KB)
Item type デフォルトアイテムタイプ(フル)fmu(1)
公開日 2022-04-15
タイトル
タイトル Impact of general practice / family medicine clerkships on Japanese medical students: Using text mining to analyze reflective writing
言語 en
作成者 Nakamura, Koki

× Nakamura, Koki

en Nakamura, Koki

Search repository
Kanke, Satoshi

× Kanke, Satoshi

en Kanke, Satoshi

Search repository
Hoshi, Goro

× Hoshi, Goro

en Hoshi, Goro

Search repository
Toyoda, Yoshihiro

× Toyoda, Yoshihiro

en Toyoda, Yoshihiro

Search repository
Yoshida, Kazutaka

× Yoshida, Kazutaka

en Yoshida, Kazutaka

Search repository
Kassai, Ryuki

× Kassai, Ryuki

en Kassai, Ryuki

Search repository
権利情報
権利情報Resource https://creativecommons.org/licenses/by-nc-sa/4.0/
権利情報 © 2022 The Fukushima Society of Medical Science. This article is licensed under a Creative Commons [Attribution-NonCommercial-ShareAlike 4.0 International] license.
内容記述
内容記述タイプ Abstract
内容記述 Background: In order for general practice / family medicine clerkships to be improved in undergraduate medical education, it is necessary to clarify the impacts of general practice / family medicine clerkships. Using text mining to analyze the reflective writing of medical students may be useful for further understanding the impacts of clinical clerkships on medical students. Methods: The study involved 125 fifth-year Fukushima Medical University School of Medicine students in the academic year 2018-2019. The settings were three clinics and the study period was 5 days. The clerkships included outpatient and home visits. Students' reflective writing on their clerkship experience was collected on the final day. Text mining was used to extract the most frequent words (nouns) from the reflective writing. A co-occurrence network map was created to illustrate the relationships between the most frequent words. Results: 124 students participated in the study. The total number of sentences extracted was 321 and the total number of words was 10,627. The top five frequently-occurring words were patient, home-visit, medical practice, medical care, and family. From the co-occurrence network map, a co-occurrence relationship was recognized between home-visit and family. Conclusion: Data suggest that medical students may learn the necessity of care for the family as well as the patient in a home-care setting.
出版者
出版者 The Fukushima Society of Medical Science
言語
言語 eng
書誌情報 en : Fukushima Journal of Medical Science

巻 68, 号 1, p. 19-24, 発行日 2022
関連情報
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 https://doi.org/10.5387/fms.2021-24
関連情報
識別子タイプ PMID
関連識別子 35135909
関連情報
識別子タイプ ICHUSHI
関連識別子 2023116779
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
収録物識別子
収録物識別子タイプ PISSN
収録物識別子 0016-2590
収録物識別子
収録物識別子タイプ EISSN
収録物識別子 2185-4610
収録物識別子
収録物識別子タイプ NCID
収録物識別子 AA0065246X
主題
主題Scheme Other
主題 medical education
主題
主題Scheme Other
主題 clinical clerkships
主題
主題Scheme Other
主題 reflective writing
主題
主題Scheme Other
主題 text mining
主題
主題Scheme Other
主題 community medicine
主題
主題Scheme MeSH
主題 Data Mining
主題
主題Scheme MeSH
主題 Family Practice
主題
主題Scheme MeSH
主題 General Practice
主題
主題Scheme MeSH
主題 Humans
主題
主題Scheme MeSH
主題 Japan
主題
主題Scheme MeSH
主題 Students, Medical
主題
主題Scheme MeSH
主題 Writing
戻る
0
views
See details
Views

Versions

Ver.1 2024-12-03 01:53:43.894401
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3