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Abstract
Extracellular matrix (ECM) is a non-cellular constituent found in all tissues and organs.  Although 
ECM was previously recognized as a mere “molecular glue” that supports the tissue structure of or-
gans such as the lungs, it has recently been reported that ECM has important biological activities for 
tissue morphogenesis, inflammation, wound healing, and tumor progression.  Proteoglycans are the 
main constituent of ECM, with growing evidence that proteoglycans and their associated glycosami-
noglycans play important roles in the pathogenesis of several diseases.  However, their roles in the 
lungs are incompletely understood. 
Leukocyte migration into the lung is one of the main aspects involved in the pathogenesis of several 
lung diseases.  Glycosaminoglycans bind to chemokines and their interaction fine-tunes leukocyte 
migration into the affected organs.  This review focuses on the role chemokine and glycosamino-
glycan interactions in neutrophil migration into the lung.  Furthermore, this review presents the 
role of proteoglycans such as syndecan, versican, and hyaluronan in inflammatory and fibrotic lung 
diseases. 
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Introduction

Extracellular matrix (ECM) is a non-cellular 
constituent found in all tissues and organs.  Re-
cently, it has emerged that the ECM not only serves 
as a physical scaffold for cells, but also has important 
biological activities for tissue morphogenesis, differ-
entiation, and homeostasis1-5).  ECM includes two 
main types of macromolecules : fibrous proteins 
(collagen, elastin, etc.) and proteoglycans.

Proteoglycans are glycoproteins consisting of a 
core protein with glycosaminoglycan (GAG) side 
chains.  Several types of proteoglycans exist in the 
lung as components of ECM6), previously recognized 
as a mere “molecular glue” providing structural sup-
port to tissues.  However, growing evidence dem-
onstrates that proteoglycans have a variety of bio-
logical activities for fine control of inflammation, 
wound healing, development, and homeostasis7-12).

There are four classes of GAGs : heparan sul-

fate, chondroitin sulfate/dermatan sulfate, keratan 
sulfate, and hyaluronan.  All these classes are found 
in normal lungs, with heparan sulfate being the pre-
dominant GAG (40-60%), followed by chondroitin 
sulfate/dermatan sulfate (31%), hyaluronan (14%), 
and heparin (5%)13).  GAGs consist of repeating di-
saccharide units of a hexosamine (glucosamine of 
galactosamine) and either a uronic acid (glucuronic 
acid or iduronic acid) or a galactose14-17) (Figure 
1).  GAG side chains, which contribute to up to 
90% of the molecular weight of proteoglycans, are 
highly sulfated and bind to a variety of proteins such 
as chemokines and growth factors6,18-20).

Proteoglycans are named according to the core 
protein to which constituent GAGs are bound, e.g., 
heparan sulfate proteoglycan (HSPG), chondroitin 
sulfate proteoglycan, and dermatan sulfate proteo-
glycan21,22).  Hyaluronan, a non-sulfated GAG, does 
not bind to a proteoglycan core protein.  Proteogly-
cans can be classified based on their location as cell 
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surface, pericellular, extracellular, and intracellular 
proteoglycans23). 

Clinical significance and research  
implications

Roles of GAGs on neutrophil migration into the lungs

GAGs bind to various cytokines and chemo-
kines, and sulfation of GAGs provides sites to which 
chemokines bind24-26).  Chemokines are a family of 
chemotactic cytokines which promote leukocyte mi-
gration into the tissues.  Several studies have re-
ported that chemokine-GAG interaction is critical 
for recruitment of leukocytes into the peritoneum 
and lungs20,27-29).

Neutrophil migration into the lungs is involved 
in the pathogenesis of several lung diseases, particu-
larly in lung infection and acute respiratory distress 
syndrome30,31).  IL-8/CXCL8 is a potent neutrophil 
chemokine which is produced by alveolar macro-
phages in the lungs during acute bacterial pneumo-
nia and acute respiratory distress syndrome30-32).    
All chemokines have a GAG-binding domain.  The 
binding of chemokines to GAGs plays critical roles 
in leukocyte recruitment into tissues by facilitating 
both the formation of tissue-bound chemokine gra-

dients and the presentation of chemokines to leuko-
cytes in tissues25,33,34). 

The GAG-binding domain of CXCL8 includes 
basic residues located in the proximal loop (K20) and 
C-terminal α-helix (R60, K64, K67, and R68)35) (Fig-
ure 2).  In the lungs, CXCL8 binds to heparin sul-
fate and chondroitin sulfate GAGs, and these inter-
actions promote the dimerization of CXCL8, 
resulting in an increase in the amount of CXCL8 
bound in lung tissues20,24).  Although these results 
suggest that the interaction of CXCL8 and GAGs 
plays a critical role in neutrophil migration in the 
lung and results of in vitro experiments support its 
possible role36-38), the precise role of this interaction 
had not been clarified in vivo.  Our research group 
uncovered the role of CXCL8 in neutrophil migra-
tion in the lung by conducting an in vivo experiment 
using two mutant forms of CXCL8 (R68A-CXCL8 
and K64A/K67A/R68A-CXCL8), which do not bind 
to GAGs39).  When intratracheally instilled into the 
lungs of mice, the CXCL8 mutants recruited more 
neutrophils into the lungs and appeared more rapidly 
in systemic circulation than recombinant CXCL8 
(Figure 3a).  In addition, the CXCL8 mutants ap-
peared in plasma at significantly higher concentra-
tions (Figure 3b) and diffused more rapidly across 
the ECM in vitro.  Furthermore, when we instilled 

Fig. 1.  Schematic representations of glycosaminoglycan and proteoglycan.  The composition of disaccharide unit 
repeats is schematically illustrated for heparan sulfate, dermatan sulfate (DS), keratan sulfate (KS), chondroitin 
sulfate (CS) and hyaluronan (HA).  Hyaluronan is the only glycosaminoglycan in a free and unsulfated form.  All 
the other glycosaminoglycans are attached to a protein, forming proteoglycans.
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another mutant CXCL8 (I64K-CXCL8), which has 
more binding activity to GAGs, into the lungs of 
mice, it recruited fewer neutrophils than recombi-

nant CXCL8 (unpublished data).  These results 
show that GAGs control the spatiotemporal forma-
tion of chemokine gradients and neutrophil migra-
tion in the lungs. 

Syndecan

Syndecan is one of the transmembrane HSPGs 
and consists of four isoforms.  Syndecan-1, -2, and 
-3 are specifically expressed on the surface of epi-
thelial cells or plasma cells, fibroblasts or endotheli-
um, and nerve cells, respectively.  On the other 
hand, syndecan-4 is expressed on a variety of 
cells12,40-43).  Heparan sulfate is the most abundant 
GAG in healthy lungs13), and several types of proteo-
glycans exist  in the lung as components of 
ECMs6).  Heparan sulfate GAG side chains of syn-
decans bind to various proteins such as cytokines, 
chemokines, and growth factors, and mediate biolog-
ical activities of these proteins19,20,44,45).  However, 
the role of HSPGs in the lung had not been clarified 
in detail.

To clarify the role of HSPGs in acute lung in-
flammation, we evaluated mRNA expression of 
HSPGs using an LPS-induced murine lung inflam-
mation model.  After LPS instillation, syndecan-4 
mRNA was rapidly and selectively upregulated 
among the HSPGs studied46) (Figure 4a).  There-
fore, we focused on syndecan-4 for our further stud-
ies.  In the LPS-induced lung inflammation model, 
more neutrophils were found in bronchoalveolar la-
vage fluid (BALF) in syndecan-4 deficient mice 
compared to wild-type mice46) (Figure 4b, c).    
Moreover, in a model of lung inflammation induced 

Fig. 2.  Glycosaminoglycan-binding domain on 
CXCL8 dimer.  CXCL8 has three binding do-
mains :  a high-affinity binding domain, which me-
diates binding to specific receptors on polymor-
phonuclear neutrophils ; the glycosaminoglycan-

binding domain (K20, R60, K64, K67, R68) ; and 
the dimer interface (R6), where CXCL8 molecules 
bind to each other to form dimers.  Blue and red 
show positively and negatively charged regions, 
respectively.

Fig. 3.  Neutrophil migration in response to rCXCL8 and CXCL8 mutants.  a) The CXCL8 mutants (R68A-CXCL8 
and K64A/K67A/R68A-CXCL8 : TM-CXCL8) recruited more neutrophils into the lungs than recombinant 
CXCL8 (rCXCL8).  b) The CXCL8 mutants appeared more rapidly in plasma after intratracheal instillation than 
rCXCL8.

	 * : p < 0.05 vs rCXCL8.  # : p < 0.05 vs control.
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by S. pneumonia, the survival rate of the syndecan-4 
deficient mice was significantly lower than wild-type 
mice (Figure 5), while their total neutrophil counts 
in BALF, bacterial counts in blood, and plasma levels 
of inflammatory cytokines were significantly high-
er47).  In addition, pretreatment of recombinant syn-
decan-4 significantly inhibited LPS-induced CXCL8 
upregulation in BEAS-2B bronchial epithelial 
cells46).  These results indicate that syndecan-4 can 
inhibit acute inflammation in the lungs.  Further-
more, we evaluated the role of syndecan-4 in lung fi-
brosis48).  In a bleomycin-induced lung fibrosis 
model, the histopathological lung fibrosis score and 
collagen content in lung tissues were significantly 
higher in syndecan-4 deficient mice compared to 
wild-type mice at 21 days after intratracheal bleo-
mycin instillation.  In in vitro experiments using 
lung fibroblasts, TGF-β-induced Smad3 activation as 
well as collagen and α-smooth muscle actin upregu-
lation were significantly inhibited by co-incubation 
of recombinant syndecan-4.  These results show 
that syndecan-4 is involved in the pathogenesis of 
lung fibrosis.

To further explore the role of syndecan-4 in 

lung diseases, we analyzed the serum levels of syn-
decan-4 in patients with acute pneumonia and idio-
pathic interstitial pneumonia (IIP)47,49).  Although 
syndecans exist on cell surfaces, cell surface syn-
decans can be cleaved by several inflammatory fac-
tors such as matrix metalloproteinase (MMP)-7 and 

Fig. 4.  Role of syndecan-4 in lipopolysaccharide-induced lung inflammation.  a) Changes in mRNA for the heparan 
sulfate proteoglycans after intratracheal instillation of lipopolysaccharide (LPS) into wild-type mice.  Among 
heparan sulfate proteoglycans, syndecan-4 mRNA was rapidly and selectively up-regulated.  * : p < 0.05 vs 
syndecan-4-PBS.  b, c) Intratracheal instillation of LPS induced more neutrophil recruitment into the lungs in 
syndecan-4 deficient mice (Sdc4 KO) than wild-type mice (WT).  * : p < 0.05 vs WT.

Fig. 5.  Survival of wild-type and syndecan-4 deficient 
mice after intranasal instillation of S. pneumoni-
ae.  The survival rate of syndecan-4 deficient 
(Sdc4 KO) mice was significantly worse after in-
tranasal instillation of S. pneumoniae (5.0×106 
CFU) than wild-type mice (WT).
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-9, or a disintegrin and metalloproteinase 1744,50-54).    
In patients with acute pneumonia, serum syndecan-4 
levels were significantly higher than those in healthy 
volunteers and were correlated negatively with the 
pneumonia severity score.  Moreover, among pa-
tients who improved with short-term antibiotic 
therapy, serum syndecan-4 levels on admission were 
higher than in those who did not improve and gradu-
ally increased during the antibiotic therapy47).  IIP, 
including idiopathic pulmonary fibrosis (IPF), is a 
chronic, progressive, and intractable fibrosing lung 
disease55-57).  During its clinical course, acute respi-
ratory failure (also referred to as acute exacerbation) 
may occur, and this is reported to be the most com-
mon cause of death (40%) in Japanese IPF pa-
tients58).  We found that serum syndecan-4 levels 
were significantly lower in patients with acute exac-
erbation of IIP than in those in the clinically stable 
phase, and the prognosis after acute exacerbation 
onset was significantly worse in the patients with 
higher baseline serum syndecan-4 levels than in 
those with lower baseline levels49).  Furthermore, 
the clinical significance of serum syndecan-4 levels 
in preterm infants with chronic lung disease was re-
cently demonstrated59).  These results show that 
serum syndecan-4 is a clinically significant biomark-
er in lung diseases.   

Versican and hyaluronan

Versican, a large chondroitin sulfate proteogly-
can belonging to the aggrecan family, has a molecular 
weight >1,000 kDa in its four isoforms, V0-V3, pro-
duced by alternative splicing60).  Versican alters the 
pericellular environment by binding to various medi-
ators via the GAG domain.  In addition, versican 
modifies the bioactivities of ECM proteins, such as 
hyaluronan, and plays important roles in cell mor-
phology,  adhesion,  prol i feration and migra-
tion61,62).  Hyaluronan, a non-sulfated GAG, is a ma-
jor constituent of the ECM, and growing evidence 
shows its important roles in inflammation, injury, 
and repair in the lung63,64). 

In an LPS-induced murine lung inflammation 
model, we demonstrated that a rapid increase in 
mRNA expression of versican and hyaluronan syn-
thase was associated with increased immunohisto-
chemical staining for versican and hyaluronan.  In 
addition, in vitro studies showed that LPS caused a 
rapid increase in versican mRNA, proteins, and hyal-
uronan synthase in M1 macrophages, but not in M2 
macrophages65).  These results show important 
roles of versican and hyaluronan in the innate im-
mune response to gram-negative lung infection.

In patients with IIP, significantly higher levels 
of serum hyaluronan were found compared to 
healthy volunteers, and positive correlations of hyal-
uronan levels in BALF with the percentage of in-
flammatory cells and the amount of CXCL8 were 
shown.  In addition, patients with acute exacerba-
tion had significantly higher serum hyaluronan lev-
els compared with those in the stable phase, and pa-
tients with the highest serum hyaluronan had the 
worst 60-day outcomes66).  These results show that 
hyaluronan is involved in the pathogenesis of IIP, 
and serum hyaluronan is a possible biomarker in pa-
tients with IIP. 

Proteases such as MMPs are involved in the 
pathogenesis of lung fibrosis, and MMP-1 and 
MMP-7 levels in blood, in particular, are reported to 
be prognostic biomarkers for IPF67,68).  In addition, 
it is reported that the serum levels of ECM products 
degraded by MMPs increased and were related to 
disease activity in IPF69).  In the PROFILE study, 
increased serum levels of proteoglycans degraded 
by MMPs were reported to be associated with dis-
ease activity in patients with IPF70).  We analyzed 
the serum levels of ECM degradation products in 
IIP patients, and found that type IV and VI collagen 
degradation products were significantly higher, while 
elastin and versican degradation products were low-
er during acute exacerbation than during the stable 
phase of IIP.  Furthermore, lower levels of versican 
degradation products during acute exacerbation 
were associated with an increased risk of mortali-
ty71).   

Decorin

Decorin is a small, leucine-rich proteoglycan 
with one chondroitin/dermatan sulfate GAG side 
chain72).  Decorin binds to collagen and plays impor-
tant roles in collagen fibril formation and fibrous 
spacing73-75).  It is reported that decorin-deficient 
mice have a phenotype of abnormal collagen fibril 
morphology and skin fragility73,76).  In addition to its 
role in collagen fibrogenesis, decorin also plays im-
portant roles in angiogenesis, innate immunity, in-
flammation, fibrosis, wound healing, tumor growth 
and autophagy73,74,77,78). 

In IPF, decorin is reportedly expressed in fi-
brotic collagen-deposited lesions and fibroblastic 
foci79).  We analyzed the serum decorin levels in IIP 
patients in the stable phase and at the time of acute 
exacerbation, and found that serum decorin levels at 
the time of acute exacerbation were significantly 
lower compared with those in the stable phase or in 
healthy volunteers.  In addition, serum decorin lev-
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els in clinically stable IIP patients were significantly 
lower than those in healthy subjects.  Moreover, 
those with serum decorin levels lower than the me-
dian, especially the patients with acute exacerbation 
of IPF, had significantly higher survival rates com-
pared to those with higher-than-median serum 
decorin levels80). 

Conclusion

ECM is involved in the pathogenesis of several 
lung diseases, and ECM in biological samples, such 
as serum and BAL fluid, is a potential biomarker in 
patients with lung diseases. 
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