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Abstract�  
Sleep-disordered breathing (SDB) is frequently observed in patients with heart failure (HF), and 
complex pathologic conditions exist between both conditions. In this review article, we describe the 
characteristics of SDB complicated with HF, the prognostic impact of SDB in HF patients, and the 
favorable effects of positive airway pressure in HF patients with SDB.
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Introduction

Heart failure (HF) is a systemic disease with a 
devastating prognosis, and affects many of the organ 
systems.  In HF patients, sleep-disordered breath-
ing (SDB) is a frequent co-morbidity and its preva-
lence is related to the severity of the clinical sta-
tus1-4).  Over 50% of patients with HF (with either 
preserved or reduced ejection fraction [EF]) have 
SDB, which is around 10 times the rate in the gen-
eral population2).  In current clinical practice, SDB 
remains undiagnosed in many HF patients.  Older 
age, male gender, increased body mass index, lower 
EF, and the presence of atrial fibrillation are inde-
pendent predictors for the presence of SDB3).  Re-
ferring to recent articles1-4), and adding our findings, 
we describe the characteristics of SDB complicated 
with HF, the prognostic impact of SDB in HF pa-
tients, and the favorable effects of positive airway 
pressure in HF patients with SDB.

Definition and classification of SDB

Polysomnography including the assessment of 
the electroencephalogram, electrooculogram, elec-
trocardiogram, electromyogram, nasal and oral air-
flows, respiratory movement (thoracic and abdomi-
nal respiratory effort), snoring oxygen saturation, 
body position, and sleep stage, has long been consid-
ered the gold standard test for SDB (Figure 1).  An 

apnea is the absence of inspiratory airflow for at 
least 10 sec.  A hypopnea is a lesser decrease in 
airflow, lasting 10 sec or longer, and associated with 
a drop in arterial oxygen saturation and/or an elec-
troencephalographic arousal1-4).  Apnea and hypop-
nea are classified as obstructive or central, but in ei-
ther case, they result from an absence or reduction 
of breathing command of brainstem to upper airway 
muscles (e.g., genioglossus) and/or lower thoracic 
inspiratory pump muscles (diaphragm and intercos-
tal muscles)1,5).  SDB includes obstructive sleep ap-
nea (OSA), central sleep apnea (CSA) with Cheyne-

Stokes respiration (CSR), or a combination of both.  
The pattern of neural output determines the pheno-
type.  OSA is characterized by cessation or marked 
reduction of the airflow in the presence of respirato-
ry effort (Figure 1).  OSA occurs when complete 
upper airway occlusion occurs (absent airflow, 
tongue falling back, regardless of activity of the in-
spiratory thoracic pump muscles.  In OSA, there is 
collapse of the pharynx during sleep with conse-
quent upper airway obstruction, often with snoring.  
Predisposing factors include obesity, a short neck, 
and retrognathism.  In contrast, CSA is character-
ized by cessation of both airflow and respiratory ef-
fort during sleep (Figure 2).  CSA occurs when 
there is a transient reduction by the pontomedullary 
pacemaker in the generation of breathing rhythm, 
usually reflecting changes in the partial pressure of 
CO2, which can fall below the apnea threshold1).  

Corresponding author : Akiomi Yoshihisa  E-mail : yoshihis@fmu.ac.jp
https://www.jstage.jst.go.jp/browse/fms  http://www.fmu.ac.jp/home/lib/F-igaku/

32



33Heart failure and sleep disordered breathing

Thorax 

Abdomen 

30sec 

Figure 1 

Body position 

Sleep stage 

Airflow 

Electro 
encephalogram 

Electro oculogram 

Electro cardiogram 

Oxygen saturation 

Snoring 

Electro myogram 

Fig. 1.  Obstructive sleep apnea
	 Obstructive sleep apnea (downward arrow) is characterized by cessation or marked reduction of the ariflow (airflow 

band) in the presence of respiratory effort (thorax and abdomen band). 
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Fig. 2.  Central sleep apnea
	 Central sleep apnea (downward arrow) is characterized by cessation of both ariflow (airflow band) and respiratory 

effort (thorax and abdomen band) during sleep.  Cheyne-Stokes respiration is recognized as increasing and de-
creasing gradually repeated respiratory pattern.
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CSR is one type of CSA, and is recognized as a re-
peated respiratory pattern of gradually increasing 
and decreasing ventilatory volume. 

In HF, rostral fluid shift during sleep leads to 
pharyngeal edema, which may exacerbate the ten-
dency to obstruct6).  In CSA, the underlying abnor-
mality is in the regulation of breathing in the respi-
ratory centers of the brainstem.  In normal 
physiology, minute ventilation during sleep is pri-
marily regulated by chemoreceptors in the brain 
stem and carotid bodies, which trigger an increase in 
respiratory drive in response to a rise in arterial car-
bon dioxide (PaCO2), thus maintaining PaCO2 within 
a narrow range2,6).  Patients with HF and CSA tend 
to have an exaggerated respiratory response to car-
bon dioxide associated with excess sympathetic ner-
vous activity, and so that a modest rise in PaCO2 that 
may occur during sleep results in inappropriate hy-
perventilation2,7,8).  This drives the PaCO2 below 
the ‘apneic threshold’, at which point the neural 
drive to respire is too low to stimulate effective in-
spiration, and an apnea or hypopnea ensues. 

Whilst polysomnography provides comprehen-
sive data, it is expensive, laborious, and not available 
in all centers.  A more limited, multichannel sleep 
polygraphy (with oxygen saturation, nasal airflow, 
and chest and abdominal movement recording capa-
bility) is more widely available and can be set up by 
the patient at home.  Studies comparing the diag-
nostic accuracy of home polygraphy have shown that 
it has a sensitivity and specificity of 90-100% for the 
diagnosis of significant SDB2,9,10).  Because of the 
lack of subjects’ and physicians’ awareness of SDB, 
especially in subjects with HF, and limited access to 
a portable sleep monitor or overnight polysomnog-
raphy, the majority of SDB subjects remain undiag-
nosed.  SDB is associated with an altered sympa-
thovagal balance determined by the nocturnal cyclic 
alternating of apneas and hyperventilation-bradycar-
dia during apnea, followed by abrupt tachycardia11).  
This phenomenon causes cyclic variation in heart 
rate11).  Not only OSA but also CSA-CSR demon-
strated heart rate oscillations12).  Both types of SDB 
present cyclic lengthening/shortening in the R-R in-
terval, during apnea-post apneic hyperventilation13).  
We previously reported that cyclic variation of heart 
rate score (CVHRS) determined by Holter electro-
cardiogram is a useful screening index for severe 
SDB in HF subjects14).  In that study, there was a 
significant positive correlation between CVHRS and 
apnea hypopnea index, which is a primary index of 
SDB (R=0.60, P<0.001)14).  In addition, the receiv-
er operating curve analysis revealed that CVHRS (a 

cut off value of 30/h) identified severe SDB with a 
sensitivity of 82%, specificity of 77%, and area under 
the curve of 0.83 (95% confidence interval 0.72-

0.93)14).  Pacemaker algorithms were recently de-
veloped to detect and quantify SDB accurately15).  It 
is now possible to measure thoracic impedance con-
tinually between the right ventricular lead tip and 
the generator.  On inspiration, the increased vol-
ume of air in the chest increases thoracic imped-
ance, with the inverse occurring on expiration, with 
consequent proportional changes in detected poten-
tial difference.  It has been recently reported that 
intrathoracic impedance has a sensitivity of 88.9% 
and specificity of 84.6% for the diagnosis of moder-
ate to severe SDB15).

Impact of SDB in HF patients

Inspiratory efforts in OSA against the occluded 
upper airway are associated with intrathoracic pres-
sure oscillations that result in increased sympathetic 
activity4,16).  The hypoxia, hypercapnia, and arousal 
from sleep that occur at the end of the OSA further 
increase sympathetic activity.  The post-apneic pe-
riod is when a patient recovers upper airway patency 
and is often characterized by marked increases in 
blood pressure and heart rate4,17).  Importantly, the 
adverse cardiovascular consequences of OSA are not 
confined to sleep.  Indeed, increased daytime sym-
pathetic nervous activity and arterial hypertension 
are also reported to occur in OSA patients.  OSA 
may accelerate the progression of HF in several 
ways.  The negative intrathoracic pressure gener-
ated by the respiratory muscles trying to inspire 
against the closed airway increases venous return to 
the right heart ; thus, increasing pre-load and caus-
ing the septum to shift to the left, which may com-
promise left ventricular (LV) function2-4).  The abili-
ty of the failing left ventricle to cope with enhanced 
preload is further impaired by the increased trans-
mural pressure during episodes of negative intratho-
racic pressure, which in turn increases the afterload.  
Apnea and hypopnea activate the sympathetic ner-
vous system, and levels of circulating catechol-
amines and muscle sympathetic nervous activity are 
higher in those with SDB and HF than HF without 
SDB2,8,18).  These factors accompanied with inflam-
matory mediators cause hypertension, arrhythmia, 
coronary arterial disease, myocardial dysfunction 
and HF4).  We have previously reported that SDB is 
associated with latent myocardial damage and altera-
tion of myocardial carnitine metabolism in patients 
with HF, presented by higher circulation troponin T 
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and carnitine levels19).  In addition, SDB induces 
impairment of vagal activity, cardiac electrical insta-
bility, and ventricular arrhythmias across a 24-hour 
period accessed by heart rate variability and heart 
rate turbulence using Holter electrocardiogram20,21).  
It still remains unclear whether CSA-CSR is merely 
a marker of the severity of HF, or an important risk 
factor that independently worsens the prognosis of 
HF patients, and whether treatment of CSA-CSR is 
useful in HF patients.  When multivariate analyses 
were performed to control for potential confounders 
involved in determining outcome in patients with 
HF, CSA was an independent factor for death or car-
diac transplantation in these patients4,22,23).  Some 
large-scale studies have demonstrated that SDB is 
associated with occurrence of ventricular arrhyth-
mias20,24) and adverse prognosis in HF patients25,26). 

Treatment of OSA in HF patients

Continuous positive airway pressure (CPAP) is 
widely established in clinical guidelines for the treat-
ment of symptomatic OSA in the non-HF popula-
tion5).   CPAP provides continuous pressure 
throughout the respiratory cycle.  The resultant 
positive pressure prevents the pharynx from collaps-
ing and thus improves apnea and hypopnea (Figure 

3).  It may have additional benefits in HF, as posi-
tive end-expiratory pressure prevents alveoli col-
lapsing secondary to pulmonary edema and main-
tains alveoli at a greater diameter, thus reducing the 
work of breathing (Figure 3).  It also increases al-
veolar recruitment, improves gas exchange, and re-
duces right to left intrapulmonary shunting of 
blood1,2).  The positive intrathoracic pressure re-
duces venous return (preload) and LV transmural 
pressure (afterload), and may therefore benefit car-
diac function in some patients2).  In the current 
study, CPAP caused abolition of negative intratho-
racic pressure swings and reductions in nocturnal 
blood pressure, which caused a dramatic reduction 
in LV afterload that was accompanied by a decrease 
in heart rate.  We reported that CPAP improves 
right ventricular systolic function, pulmonary func-
tion and exercise capacity, resulting in reduction in 
all-cause mortality in HF patients with preserved 
EF27).

Treatment of CSA in HF patients

The optimal management of CSA in HF is less 
well determined than that of OSA.  Standard thera-
py of HF such as diuretics28), beta-blockers29), and 
cardiac resynchronization therapy30) improves CSA 

Positive end-expiratory pressure 
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Interstitium 
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Positive airway pressure 

Figure 3 

Fig. 3.  Effect of positive airway pressure
	 Upper panels : Positive airway pressure widens an upper airway and pulmonary alveoli. 
	 Lower panels : Positive end-expiratory pressure expands pulmonary alveoli, decreases pulmonary fluid and im-

proves congestion and gas exchange in patients with heart failure. 
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in HF patients.  Therefore, standard HF therapy is 
performed prior to specific CSA therapy in HF.  
Nocturnal oxygen therapy has been shown to reduce 
sympathetic drive and increase nocturnal oxygen 
saturation in HF patients with CSA31).  Oxygen 
therapy improves not only CSA, but also attenuates 
sympathetic nervous activity and ongoing myocardi-
al damage32), and improve LVEF at least up to 12 
weeks33).  Nasal CPAP treatment showed an im-
provement in the CSA, an increase in LVEF and 
nocturnal oxygen saturation, a reduction in the plas-
ma levels of norepinephrine, and an improved 6-min 
walking distance compared with the placebo 
group34).  Unfortunately, no improvement was found 
in the overall death and heart transplantation rates 
between the two groups.  However, a post-hoc 
analysis showed a decrease in mortality in patients 
in whom CPAP therapy resulted in improvement of 
CSA35).  Interestingly, the responder group (CPAP-

CSA-suppressed) had a significant increase in LVEF 
at 3 months, and had a higher transplantation-free 
survival than the control subjects35).  No differences 
in any of these variables were found in the non-re-
sponder group (CPAP-CSA-unsuppressed)35).  
Therefore, suppression of CSA has been focused 
upon.  Technological progress has led to the devel-
opment of devices for adaptive servo ventilation 
(ASV), which provide varying amounts of ventilatory 
pressure support against a background of low-level 
CPAP36).  Several studies suggest that ASV is more 
effective than CPAP, bi-level pressure support venti-
lation, or increased dead space in alleviating  
CSA36-39).  We demonstrated that ASV improves not 
only left ventricular systolic40-42) and diastolic func-
tion43), but also pulmonary function27), renal function44), 
vascular function43), as well as prognosis in HF pa-
tients with reduced or preserved EF27,40-44).  Recent 
meta-analyses on ASV in HF patients with CSA 
suggested an overall improvement in CSA, as well 
as improvements in LVEF, diastolic dimensions and 
function, 6-min walk test distance, plasma natriuret-
ic peptide concentration, and sympathetic activi-
ty2,45).  However, a recent randomized trial failed to 
demonstrate that ASV improves prognosis of HF pa-
tients with CSA46).  Further studies are needed to 
determine whether managing SDB improves prog-
nosis of HF patients.
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