
Perceptual uncertainty modulates auditory
statistical learning: A magnetoencephalography
study

言語: English

出版者: 

公開日: 2022-05-24

キーワード (Ja): 

キーワード (En): 

作成者: 岡野, 智子

メールアドレス: 

所属: 

メタデータ

https://fmu.repo.nii.ac.jp/records/2000398URL



1 
 

 

 

 

学位論文 

 

Perceptual uncertainty modulates auditory statistical learning: 

A magnetoencephalography study 

（遷移確率の違いが聴覚統計学習に与える影響：脳磁図を用いた研究） 

 

 

 

 

 

 

 

福島県立医科大学大学院医学研究科 

病態神経学分野（脳神経内科学講座） 

岡野 智子 
  



2 
 

Perceptual Uncertainty Modulates Auditory Statistical Learning: A Magnetoencephalography 

Study 

 

Tomoko Okanoa,b, Tatsuya Daikokub,c*, Yoshikazu Ugawad, Kazuaki Kanaia, Masato 

Yumotob,e 

 

a Department of Neurology, Fukushima Medical University, Fukushima, Japan 

b Department of Clinical Laboratory, Graduate School of Medicine, The University of Tokyo, 

Tokyo, Japan 

c International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Japan 

d Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan 

e Advanced Medical Science Research Center, Gunma Paz University, Gunma, Japan 

 

* Correspondence:  

Tatsuya Daikoku: daikoku.tatsuya@mail.u-tokyo.ac.jp 

mailto:daikoku.tatsuya@mail.u-tokyo.ac.jp


Abstract 

Statistical learning allows comprehension of structured information, such as that in language and 

music. The brain computes a sequence’s transition probability and predicts future states to minimise 

sensory reaction and derive entropy (uncertainty) from sequential information. Neurophysiological 

studies have revealed that early event-related neural responses (P1 and N1) reflect statistical learning 

− when the brain encodes transition probability in stimulus sequences, it predicts an upcoming 

stimulus with a high transition probability and suppresses the early event-related responses to a 

stimulus with a high transition probability. This amplitude difference between high and low 

transition probabilities reflects statistical learning effects. However, how a sequence’s transition 

probability ratio affects neural responses contributing to statistical learning effects remains unknown. 

This study investigated how transition-probability ratios or conditional entropy (uncertainty) in 

auditory sequences modulate the early event-related neuromagnetic responses of P1m and N1m. 

Sequence uncertainties were manipulated using three different transition-probability ratios: 90:10%, 

80:20%, and 67:33% (conditional entropy: 0.47, 0.72, and 0.92 bits, respectively). Neuromagnetic 

responses were recorded when participants listened to sequential sounds with these three transition 

probabilities. Amplitude differences between lower and higher probabilities were larger in sequences 

with transition-probability ratios of 90:10% and smaller in sequences with those of 67:33%, 
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compared to sequences with those of 80:20%. This suggests that the transition-probability ratio 

finely tunes P1m and N1m. Our study also showed larger amplitude differences between frequent- 

and rare-transition stimuli in P1m than in N1m. This indicates that information about transition-

probability differences may be calculated in earlier cognitive processes.  

 

Keywords: entropy; information theory; magnetoencephalography; Markov model; statistical 

learning; uncertainty 

 

Abbreviations: ANOVA, analysis of variance; ECDs, equivalent current dipoles; ERFs, event-

related magnetic fields; ERPs, event-related potentials; MEG, magnetoencephalography; MMN, 

mismatch negativity; sMMN, statistical MMN
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1. Introduction 

The human brain extracts statistical regularities from the world around us to learn about the 

environment. This factor is referred to as statistical learning, which allows us to predict an upcoming 

phenomenon to minimise prediction errors and resolve perceptual uncertainty (Friston, 2010; 

Hasson, 2017). Statistical learning of sequences allows people to develop the ability to produce and 

comprehend structured information, such as in language and music (Saffran et al., 1996). It entails 

encoding transition probabilities and deriving entropy (i.e., uncertainty) therefrom in sequential 

information, as in language and music. Statistical learning is an implicit and innate function of the 

human brain (Perruchet and Pacton, 2006) and is considered an imperative mechanism in neural 

development (Daikoku, 2019).  

Previous studies have revealed that statistical learning is reflected in both neural and 

behavioural responses (for a review, see Daikoku, 2018). The neural response in statistical learning 

must be detectable prior to the learner being consciously aware of learning. Notably, 

electroencephalography and magnetoencephalography (MEG) can directly measure neural activity 

during statistical learning and can detect it more evidently than observation of behavioural changes 

(Koelsch et al., 2016; Paraskevopoulos et al., 2012). In the framework of predictive coding (Friston, 

2005), when the brain encodes the transition probability distribution of stimulus sequences, it expects 
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an upcoming stimulus with a high transition probability and suppresses neural activity in response to 

a predictable stimulus.  

The difference in neural activity between predicable (frequent) and unpredictable (rare) 

stimuli, therefore, may denote early information processing in statistical learning. Researchers regard 

this amplitude difference as the effectiveness of statistical learning and define it as the statistical 

learning effect (De Diego Balaguer et al., 2007; Cunillera et al., 2006; Daikoku et al., 2014, 2015; 

Francois and Schön, 2011; Furl et al., 2011; Sanders et al., 2002). The difference between frequent- 

and rare-transition stimuli (statistical learning effect) correlates with the degree of transition 

probability (Koelsch et al., 2016; Pearce and Wiggins, 2012). For example, event-related potentials 

(ERPs) and event-related magnetic fields (ERFs) have shown significant effects of statistical 

learning on various neural components from the early latencies (e.g., P50 or P1: Daikoku et al., 

2016; Daikoku and Yumoto, 2017; Paraskevopoulos et al., 2012, N100 or N1: Daikoku et al., 2014, 

2015; Furl et al., 2011; Sanders et al., 2002) to the late latencies (e.g., P200: Balaguer et al., 2007; 

Cunillera et al., 2006; Francois and Schön, 2011; Furl et al., 2011, and N400: Balaguer et al., 2007; 

Cunillera et al., 2006, 2009; François et al., 2013; François and Schön, 2014; Sanders et al., 2002). It 

is known that different ERP/ERF components have different roles in information processing. For 

example, the suppression of the ERP/ERF components in early latencies, such as P1m and N1m, 
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reflects predictions from higher cognitive cortical areas through a top-down pathway (Daikoku, 

2018; Skoe et al., 2015). However, despite many ERP/ERF studies on statistical learning, few have 

investigated how the uncertainty of a sequence (e.g., entropy or transition-probability ratios) 

modulates the early ERP/ERF components (Koelsch et al., 2016). 

In this study, we investigated how the transition-probability ratio or uncertainty of the 

auditory sequence influences the statistical learning effect on the early ERF components of P1m and 

N1m, using MEG. The uncertainty of the three sequences was manipulated using three different 

transition-probability ratios of 90:10%, 80:20%, and 67:33% (conditional entropy: 0.47, 0.72, and 

0.92 bits, respectively). In this study, we termed the frequent sequence as high occurrence rate 

sequence, and the rare sequence, a low occurrence rate sequence. Neuromagnetic responses were 

recorded as participants listened to the three sequences. We hypothesised that the ERF responses to 

stimuli with higher transition probabilities would be significantly smaller than those with lower 

transition probabilities, as demonstrated in several previous studies. Moreover, we assumed that the 

amplitude difference of neural responses between higher and lower transition probabilities (statistical 

learning effect) would have an inverse relationship with conditional entropy (uncertainty): the 

statistical learning effect would be more and less pronounced in the sequences with transition-

probability ratios of 90:10% and less pronounced in the sequence with transition-probability ratios of 
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67:33%, respectively, compared with the sequence with transition-probability ratios of 80:20%. The 

transition-probability ratio or uncertainty may finely tune the early ERF components of P1m and 

N1m.  

 

2. Methods 

2.1. Participants 

Seventeen right-handed (Edinburgh handedness questionnaires; laterality quotient: mean 

[standard error of mean] = 84.4 [±8.5]), healthy volunteers participated in this study (12 women; age 

range, 24–45 years). They had neither neurological nor audiological disorders by self-report. Further, 

they had no formal musical training for longer than 5 years in addition to their regular school 

lessons. None of the participants possessed absolute pitch. The study was carried out in accordance 

with the guidelines of the 1964 Declaration of Helsinki and was approved by the Ethics Committee 

of the University of Tokyo. All participants were well informed about the purpose and safety of this 

investigation, assured that their data would be protected, and provided written informed consent to 

participate in this study. 

 

2.2. Stimuli and Experimental Protocol 
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Three types of 1,500-tone sequences were prepared and are detailed in the S1 Appendix. In 

each sequence, the 1,500 pure tones that consisted of five pitches in a five-tone equal temperament 

(F0 = 350 × 2(n-1)/5 Hz, n = 1–5; 350, 402, 462, 531, and 609 Hz) were sequenced with the 

constraint that the probability of a forthcoming tone was statistically defined by the two most recent 

tones (second-order Markov models). They were presented with a constant stimulus onset 

asynchrony of 600 ms (duration, 300 ms; rise/fall, 10/200 ms; binaural presentation, 80 dBSPL 

intensity). By manipulating the transition-probability ratios of the Markov models, three sequences 

with different transition-probability ratios of 90:10%, 80:20%, and 67:33% were prepared. Based on 

information theory, the conditional entropies are 0.47 bits in the sequence with a transition-

probability ratio of 90:10%, 0.72 bits in the sequence with a transition-probability ratio of 80:20%, 

and 0.92 bits in the sequence with a transition-probability ratio of 67:33% (about this formula, see 

Daikoku, 2018). The three distinct types of Markov chains were used in each of the three sequences 

because if the same Markov chain was used in all three sequences with different transition-

probability ratios, participants may realise the abstract transition pattern even if the transition-

probability ratio was distinct. Further, the use of Markov chains was also counterbalanced across 

participants to avoid the effect of a specific transition pattern of a Markov chain. The three types of 

diagrams of Markov chains are provided in the S2 Appendix. A representative transition matrix of 
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the Markov chains is shown in Figure 1. A 600-ms silent period was inserted in a pseudorandom 

manner within every set of 50 successive tones in the sequence; the participants were instructed to 

raise their right hand at every silent period in the sequence to confirm that they attended to the tone 

sequences. We identified the performance of this task by visual inspection and an experimenter 

recording times of omission. The participants listened to the three types of statistical learning 

sequences during MEG measurement and took a behavioural test immediately after each statistical 

learning sequence. In the behavioural tests, they were presented with 10 types of 8-tone series, half 

of which were sequenced by the same Markov model. They indicated whether each tone series 

sounded familiar or not. The experiment duration for each participant was about 1 hour.   
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Figure 1. Representative transition matrices of Markov chains used in present study  

Rows: the two tones that were most recently presented. Columns: the next tone that might appear. 

Each pair of two tones (rows) could be followed by one of the five subsequent tones (columns), with 

a higher (black cells) or a lower (dashed cells) probability. By manipulating the transition-probability 

ratios of the Markov models, the three sequences with different transition-probability ratios of 

90:10%, 80:20%, and 67:33% (conditional entropy: 0.47, 0.72, and 0.92 bits, respectively) were 

prepared. Three distinct types of Markov chains were used in each of the three sequences because 

participants might realise the abstract transition pattern if the same Markov chain was used in all 

sequences. The use of Markov chains was also counterbalanced across participants to avoid the 

effect of the specific transition pattern of a Markov chain.  
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2.3. Measurement and analysis 

Measurement and analysis were the same as those used in our previous study (Daikoku et 

al., 2014). Auditory stimuli were sequenced with the STIM2 system (Compumedics Neuroscan, E1 

Paso, TX, USA) and were binauralised to the participants’ ears at 80 dVSPL through an ER-3A 

earphone (Etymotic Research, Elk Grove Village, IL, USA). The order of the three sequences was 

counterbalanced across participants to ensure that specific transition patterns did not interfere with 

learning in adjacent sequences.  

We recorded MEG signals from the participants while they listened to the three sequences. 

MEG-signal recording and the analyses were performed using the Elekta Neuromag system (Oy, 

Helsinki, Finland), a 306-channel neuromagnetometer system with 204 planar first-order 

gradiometers and 102 magnetometers at 102 measuring sites (see S2 Appendix) on a helmet-shaped 

surface covering the entire scalp with the Elekta Neuromag system (Oy, Helsinki, Finland) in a 

magnetically shielded room. Epochs induced by the auditory stimuli were filtered online with a 0.1 

Hz to 200 Hz range and recorded at a sampling rate of 600 Hz. Epochs with artifacts that exceeded 3 

pT/cm or 3 pT for any MEG channel were excluded from the analyses. Contamination from 

environmental noise was reduced using the temporally extended signal space separation method with 

a buffer length of 10 s and a correlation limit of 0.980. All responses to tones in the three sequences 
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were averaged for each participant to evaluate the reliability of the single equivalent current dipoles 

(ECDs) for each of the P1m and N1m components. The averaged responses were filtered offline with 

a 2–40 Hz band-pass. The baseline for magnetic signals in each MEG channel was defined by the 

mean amplitude in the pre-stimulus period from −100 to 0 ms. The ECDs for P1m and N1m 

responses in each hemisphere were separately estimated at the peak latency using 44 temporal 

channels without magnetometers in each participant (S2 Appendix). Participants who demonstrated 

poor ECD estimation, with a goodness-of-fit below 70% in either the left or right hemisphere, were 

not used in further analyses. Consequently, the P1m and N1m components were studied in 15 and 12 

participants, respectively (see S2 Appendix). 

Selective response averaging was performed separately for each phase, first (1-500 tones), 

middle (501-1,000 tones), and last (1,001-1,500 tones), in 1,500-tone sequences, and were further 

divided depending on higher and lower transition probabilities. To illustrate this process, in a 

sequence with transition-probability ratios of 90:10%, 450 trials of frequent-transition tones (i.e., 

tones with 90% transition probability) and 50 trials of rare-transition tones were averaged in each 

phase. In a sequence with transition-probability ratios of 80:20%, 400 trials of frequent-transition 

and 100 trials of rare-transition tones were averaged in each phase. In the sequence with transition-

probability ratios of 67:33%, 335 trials of frequent-transition and 165 trials of rare-transition tones 
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were averaged in each phase. The analysis window was defined as 0−500 ms. Using the ECDs, the 

source strength of P1m and N1m in each hemisphere was calculated based on the averaged selective 

response. Then, the peak amplitude and latency were measured for each condition in each subject. 

We performed a 2 (hemisphere: right and left) × 3 (phase: first, middle, and last) × 2 (occurrence 

rate: high and low) repeated-measures analysis of variance (ANOVA) with peak amplitude and 

latency of source strength of each component and sequence. Furthermore, we performed an ANOVA 

with the logit values of the familiarity ratios in the behavioural test. Significance levels were set at p 

= 0.05. In post hoc analyses, we used a t-test with Bonferroni correction to compensate for multiple 

comparisons. All statistical analyses were performed using the jamovi statistical platform (Version 

1.2; The jamovi project, 2020; https://www.jamovi.org). 

 

3. Results 

3.1. MEG 

We evaluated how the sequence transition-probability ratios influenced P1m and N1m 

responses. Stimuli with lower transition probabilities elicited stronger P1m and N1m responses than 

those with higher transition probabilities (Figures 2 and 3, S4 Appendix). This amplitude difference 

(higher vs. lower transition probabilities) was significant, for both the N1m and P1m components, in 
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the sequence with a transition-probability ratio of 90:10%, whereas no significant difference was 

observed in the sequence with a transition-probability ratio of 67:33%. During exposure to the 

sequence with a transition-probability ratio of 80:20%, an amplitude difference was detected in P1m 

but not N1m (see S3 Appendix for the mean P1m and N1m amplitudes and latencies). These 

observations were confirmed by ANOVAs.  

 

3.1.1. P1m 

The grand-averaged source-strength waveforms of the P1m responses in the left and right 

hemispheres are shown in Figure 2. The response amplitude difference between frequent- and rare-

transition stimuli (i.e., stimuli with high and low transition probabilities) was observed in the 

sequences with transition-probability ratios of 90:10% (Figure 2b) and 80:20% (Figure 2c) but not 

67:33% (Figure 2d). This impression was confirmed by statistical analysis.  

An ANOVA of the peak P1m amplitude revealed a significant main effect of the occurrence 

rate in the sequences with 90:10% (F[1,14] = 4.714, p = 0.048) and 80:20% (F[1, 14] = 5.718, p = 

0.031) but not the 67:33% sequence. The P1m responses to standard- or frequent-transition stimuli 

were significantly smaller than those to rare-transition stimuli. This finding is consistent with those 

of several previous ERP and ERF studies. 



16 
 

The factor of hemisphere significantly affected the P1m peak amplitude (90:10%: F[1, 14] = 

8.367, p = 0.012; 80:20%: F[1, 14] = 6.740, p = 0.021; 67:33%: F[1, 14] = 8.367, p = 0.012). The 

peak amplitudes of P1m were significantly greater in the left hemisphere than in the right 

hemisphere. The main phase effect on the P1m peak amplitudes was significant in the 90:10% and 

67:33% sequences (F[2, 28] = 5.081, p = 0.013). The post hoc test on the phase revealed that the 

P1m peak amplitudes for tones in the initial phase were significantly smaller than those in the last 

phase (90:10%: p = 0.024, 67:33%: p = 0.035). Furthermore, the hemisphere-phase interaction of the 

P1m peak amplitudes was significant in the 67:33% sequence (F[2, 28] = 4.100, p = 0.027). The post 

hoc test on the hemisphere-phase interaction revealed two significant results. Firstly, the P1m peak 

amplitudes in all phases were significantly greater in the left hemisphere than in the right hemisphere 

(initial: p = 0.019, middle: p = 0.046, final: p = 0.006). Secondly, in the left hemisphere, the P1m 

peak amplitudes in the initial phase were significantly smaller than those in the final phase. 

The main phase effect on the P1m peak latencies was significant in the 90:10% sequence 

(F[2, 28] = 7.135, p = 0.003) and 80:20% sequence (F[2, 28] = 4.448, p = 0.021). The post hoc test 

showed that the P1m peak latencies in the initial phase were significantly shorter than those in the 

middle and final phases in the 90:10% sequence (middle: p = 0.018, final phase: p = 0.004). 
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Moreover, in the case of the 80:20% sequence, the P1m peak latencies in the initial phase were 

shorter than those in the final phase (p = 0.031).  

The time courses of the differences in the peak amplitudes of P1m responses (i.e., the 

amplitude of a response to a rare-transition stimulus compared to that of a frequent-transition 

stimulus) in the left and right hemispheres are summarised in the S4 Appendix. The ANOVAs 

showed no significant differences in the statistical learning effects by phase. No other significant 

differences were detected in the ANOVAs for P1m amplitude or latency. 

 

3.1.2. N1m 

The grand-averaged source-strength waveforms of the N1m responses in the left and right 

hemispheres are shown in the S4 Appendix. In the sequence with the transition-probability ratio of 

90:10%, the N1m peak amplitudes for the high occurrence rate tones were smaller than those for the 

low occurrence rate tones in the final phase (p = 0.040). The main phase effect on the N1m peak 

amplitude was significant (90:10%: F[2, 22] = 18.773, p = 0.000, 80:20%: F[2, 22] = 5.052, p = 

0.016, 67:33%: F[2, 22] = 11.780, p < 0.001). The post hoc test revealed that the N1m peak 

amplitudes for tones in the initial phase were significantly larger than those in the middle phase 
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(90:10%, p < 0.001; 67:33%, p = 0.001) and in the final phase (90:10%: p = 0.002, 67:33%: p = 

0.011).  

The N1m peak latency was significantly affected by the occurrence rate in the 90:10% (F[1, 

11] = 15.994, p = 0.002) and 80:20% sequences (F[1, 11] = 6.221, p = 0.030) but not in the 67:33% 

sequence. The N1m peak latencies for frequent-transition tones were significantly earlier than those 

for rare-transition tones. The main phase effect on the N1m peak latency was significant in the 

90:10% (F[2, 22] = 6.784, p = 0.000) and 67:33% sequences (F[2, 22] = 10.355, p = 0.001). The post 

hoc test revealed that the N1m peak latencies in the initial phase were significantly shorter than those 

in the final phase in the 90:10% sequence (p = 0.024). Moreover, in the case of the 67:33% 

sequence, the N1m peak latencies in the initial phase were shorter than those in the middle and final 

phases (p = 0.005 and 0.018, respectively). 

The time courses of the statistical learning effects on the N1m peak (i.e., the amplitude of 

the response to a rare-transition stimulus compared to that of a frequent-transition stimulus) are 

shown in Figure 3. The abscissa shows the learning phase, and the ordinate shows the statistical 

learning effect. The upper row shows the sequence with a transition-probability ratio of 90:10% 

(Figure 3a), the middle row 80:20% (Figure 3b), and the bottom row 67:33% (Figure 3c). The 

statistical learning effect became larger in the later phases in all figures. An ANOVA showed a 
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significant phase-transition probability interaction (F[2, 22] = 7.538, p = 0.003). The phase 

significantly affected the statistical learning effect only in the transition probability of the 90:10% 

sequence. The post hoc test revealed that the statistical learning effect was significantly larger in the 

last phase than in the initial and middle phases in the sequence with a transition probability of 

90:10%. No other significant differences were detected by the ANOVAs for either N1m amplitude or 

latency.  
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Figure 2. P1m source  

ISO filed contour maps for P1m source (a) are shown for each hemisphere (top). Outflux (red lines) 

and influx (blue lines) are stepped by 20 ft. The green arrows represent ECDs. The N1m responses 

were separately modelled as single attention ECDs in each hemisphere. Grand-averaged waveforms 

for the P1m responses to frequent- (black) and rare-transition (red) stimuli in the sequences with 

transition-probability ratios of 90:10% (b), 80:20% (c), and 67:33% (d). The ordinate shows the P1m 

amplitude difference between the frequent- and rare-transition stimuli (statistical learning effect) (e).  
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Figure 3. Differences in N1m amplitudes between frequent- and rare-transition stimuli 

(statistical learning effect)  

The ordinate shows the N1m peak amplitude difference between the rare- and frequent-transition 

stimuli (i.e., response to a rare-transition stimulus compared to that of a frequent-transition stimulus). 

The abscissa shows the phase of the stimulus. The results of the 90:10% sequence is shown in the top 

row, the 80:20% sequence in the middle row, and the 67:33% sequence in the bottom row. The left 

columns are responses over the left hemisphere, and the right columns are those over the right 

hemisphere.   
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3.2. Behavioural results 

All participants correctly raised their right hand at every silent period, further confirming 

that they had attended to the tone sequences. The correct answer rates of the familiarity tests were 

significantly above the chance level for all three sequences (p < 0.001). They were converted into 

empirical logit values, which were used for the ANOVA. The ANOVA showed no significant effect 

of the transition-probability ratio on the correct answer rate (i.e., conditional entropies).  
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Figure 4. Results of familiarity tests to assess statistical learning  

The participants answered correctly in all three sequences (i.e., conditional entropies and 

uncertainty). 
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4. Discussion 

We studied how transition-probability ratio or uncertainty in the auditory stimulus sequence 

(conditional entropy) modulates the statistical learning effects of early ERF components, P1m and 

N1m. MEG was recorded when participants were presented with three sound sequences with 

different transition-probability ratios (90:10%, 80:20%, and 67:33%; conditional entropy: 0.47, 0.72, 

and 0.92 bits, respectively). We showed that stimuli with lower transition probabilities elicited 

stronger neural P1m and N1m responses than those with higher transition probabilities (Figures 2 

and 3). This finding is consistent with several previous ERP and ERF studies (e.g., Abla et al., 2008; 

Daikoku and Yumoto, 2019; Daikoku, 2018; François et al., 2013; Tsogli et al., 2019).  

In addition, the amplitude difference between frequent- and rare-transition stimuli 

(statistical learning effect) was most pronounced in the sequence with transition-probability ratios of 

90:10% and lower conditional entropy (0.47). This indicates that the transition probability ratio 

finely tunes each neural component. Exposure to the sequence with a transition-probability ratio of 

90:10% elicited a significant learning effect on both P1m and N1m responses, whereas no significant 

statistical learning effect was detected during exposure to the sequence with a transition-probability 
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ratio of 67:33%. Exposure to the 80:20% sequence elicited a statistical learning effect on P1m but 

not N1m.  

We suggest the following plausible explanation for these results. In the 90:10% sequence, 

the brain is surprised by rare-transition stimuli because the subjects mostly expect frequent-stimuli. 

Then, the difference between the rare- and frequent-transition stimuli should be large. In the 67:33% 

sequence, however, surprising effects should be small because rare- and frequent-transition stimuli 

appear at similar probabilities. Then, the significant difference in the response amplitude between the 

rare- and frequent-transition stimuli should not be present.  

Our finding of the phase effect on the statistical learning is also compatible with this 

speculation. The statistical learning effect became larger in the late phase than in the earlier phases 

only in sequences with transition-probability ratios of 90:10% (Figure 3). The learning process 

should enhance the fine-tuning more in the 90:10% task, which makes N1 and P1 responses larger in 

the late phase of learning. On the contrary, in sequences with transition-probability ratios of 67:33%, 

the learning process must not be effective because rare- and frequent-transition stimuli appear at 

similar probabilities. The statistical learning effect (amplitude difference), therefore, may not 

become considerably larger in the late phase of learning with transition-probability ratios of 67:33%. 
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Previous studies have compared the statistical learning effects on P1m and N1m 

(Paraskevopoulos et al., 2012; Daikoku et al., 2020) and have speculated about the related neural 

networks (Evangelos Paraskevopoulos, Chalas, Kartsidis, Wollbrink, & Bamidis, 2018). They have 

suggested that the P1m may reflect more proficiency or individual statistical learning ability 

compared to N1m. Further, the connectivity analysis showed that those participants with P1m 

statistical learning effects had enhanced neural network efficiency in the superior-temporal and 

inferior-frontal gyri. Thus, it is suggested that the P1 component may represent processing 

efficiency. The present result of a large sequence learning effect from strong contrast learning is 

compatible with the above hypothesis on the processing efficiency.  

According to previous studies, the complexity or uncertainty of sequences influences the 

performance of statistical learning, particularly in people with developmental learning disorders such 

as dyslexia (Du and Kelly, 2013) and amusia (Omigie et al., 2012, 2013; Omigie and Stewart, 2011). 

This implies that people with developmental learning disorders have impaired statistical learning of 

complex but not simple tasks. Our results could not reflect the corresponding modulation of the 

neural responses congruent with the probability ratios used. Thus, our findings may suggest that the 

neurophysiological observation of ERP/ERF is a more sensitive method for evaluating the 

performance and proficiency of statistical learning than observation of behavioural effects (Koelsch, 
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Busch, Jentschke, & Rohrmeier, 2016; Evangelos Paraskevopoulos, Kuchenbuch, Herholz, & 

Pantev, 2012). Our neural findings may offer novel neurophysiological insights into the mechanisms 

underlying statistical learning − the P1m components underlying statistical learning may be used to 

detect hidden statistical learning impairments and their associated developmental abnormalities. 

Previous studies found that the mismatch negativity (MMN) observed 100–200 ms after 

stimulus onset is also sensitive to the difference in the transition probability (François et al., 2017; 

Koelsch et al., 2016; Moldwin et al., 2017). Koelsch et al. (2016) found similar results of MMN to 

our findings on P1 and N1. They found that the MMN amplitudes showed an inverse relation with 

transition probabilities: a stimulus with lower transition probability elicits higher MMN amplitude. 

Tsogli et al. (2019) also found that statistical deviants elicited prominent mismatch ERP responses 

~150–250 ms after stimulus onset. The authors referred to the ERP effects due to statistical deviants 

as statistical MMN (sMMN), a term that distinguishes such effects from the traditional MMN 

elicited by a deviant based on appearance probability instead of transition probability (Paavilainen et 

al., 1989; Sams et al., 1985). Our recent study found that a positive component before MMN or N1 

(around 120 ms after stimulus onset) reflected more processing efficiency (Daikoku et al., 2021). 

Thus, the present and previous results are both compatible with the hypothesis that the early positive 

components underlying statistical learning could reflect processing efficiency. 
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From the viewpoint of the information theory (Shannon, 1948), the perceptual uncertainty 

of each sequence can be evaluated by conditional entropy. Conditional entropy can be calculated 

from the transition-probability distribution, interpreted as the average number of surprising or 

uncertain outcomes. The degree of conditional entropy modulates the predictability of each stimulus 

of sequences in statistical learning (Agres et al., 2018; Hasson, 2017; Nastase et al., 2014). Several 

studies have indicated that a sequence with higher uncertainty can be interpreted as difficult to learn 

(Daikoku, 2018; Hansen and Pearce, 2014; Harrison et al., 2006). Our findings showed 

neurophysiological evidence that perceptual uncertainty manipulated by transition probability 

influences statistical learning effects. The amplitude difference of neural responses between higher 

and lower transition probabilities will have an inverse relation with conditional entropy (uncertainty). 

However, the transition-probability ratio is not the only indicator of difficulty. For example, the 

number of stimuli could also affect the conditional entropy even if the transition-probability ratio 

were the same. Furthermore, types of stimuli (e.g., timbre, length, and loudness) should also 

influence the difficulty in statistical learning. Further research is needed to investigate how statistical 

learning effects are modulated by different methods of uncertainty or difficulty manipulation. 

Nevertheless, our study is the first to reveal that the statistical learning effect on ERF correlates 

negatively with perceptual uncertainty. 
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We also showed the dependence of the ERP effects of sequence learning on transition 

probability; strong contrast sequences have stronger effects on ERPs. These findings suggest that 

early information processing may occur in an easy task with low entropy and may not be effective in 

difficult tasks with high entropy. Boutros et al. (1995) demonstrated that P1 responses to frequent-

transition stimuli decreased during auditory oddball paradigms with a probability ratio of 90% vs. 

10% and 80% vs. 20% (Boutros and Belger, 1999). They concluded that each stimulus generates 

local inhibitory activity that suppresses the neural response to a second identical stimulus to prepare 

rare stimuli. In contrast, the novel stimulus triggers the disinhibition of the above pre-set inhibitory 

circuit and allows the neurons to respond effectively to the deviant stimulus. This gating function 

should be detected by the amplitude difference in the earlier component of P1. The above gating 

must readily occur in easy tasks and occur infrequently in difficult tasks. 

In conclusion, this study revealed how the transition-probability ratio or the conditional 

entropy (uncertainty) in the auditory sequence modulates statistical learning effects on the early 

ERFs of P1m and N1m. A strong contrast sequence evoked a large learning effect on ERPs (P1m, 

N1m). It suggests that the transition-probability ratio or uncertainty must be calculated at the early 

timings of P1m or N1m and that the transition-probability ratio or the uncertainty may finely tune 

P1m and N1m responses. We emphasise that novel experimental paradigms of statistical learning 
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applied in this study may shed new light on understanding how our brain acquires sequential 

knowledge with different uncertainties and complexities, such as that found in language and music. 
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