福島県立医科大学学術成果リポジトリ

Vehicle configurations associated with anatomical-specific severe injuries resulting from traffic collisions

メタデータ	言語: English			
	出版者:			
	公開日: 2020-04-28			
キーワード (Ja):				
	キーワード (En):			
	作成者: 伊藤, 文人			
	メールアドレス:			
	所属:			
URL	https://fmu.repo.nii.ac.jp/records/2000302			

Title

Vehicle configurations associated with anatomical-specific severe injuries resulting from traffic collisions

Fumihito Ito, MD^{1,2}

- Department of Clinical Epidemiology, Fukushima Medical University, Fukushima City, Fukushima, Japan
- Department of Innovative Research & Education for Clinicians and Trainees (DiRECT), Fukushima Medical University Hospital, Fukushima City, Fukushima, Japan

Abstract

Objectives:

Vehicles can be classified by configuration as either bonnet-type or cab-over type according to engine location. Compared to bonnet-type, the front compartment of cabover type vehicles is considerably shorter; thus, it may be less likely to absorb the energy generated in a collision, and in turn be unable to prevent deformation of the occupant space and protect occupants from injury.

Setting:

Ohta Nishinouchi Hospital, Koriyama City, Fukushima, Japan.

Participants:

943 occupants of mini-vehicles who were injured in frontal collision accidents between 2001 and 2015 and transferred to Ohta Nishinouchi Hospital.

Measurements:

The vehicle configuration was divided into bonnet-type and cab-over type (i.e., trucktype and wagon-type). The tested outcomes were anatomical-specific severe injury of the pelvis and extremities, the head and neck, the abdomen, and the chest. To estimate adjusted odds ratios (AOR) for associations between vehicle configuration and anatomical-specific severe injury, we fitted generalized estimating equations for each outcome.

Results:

Compared with bonnet-type vehicles, a greater risk of serious pelvis and extremities injury was found for both truck (AOR: 2.21; 95% Confidence Interval [95% CI]: 1.22–4.00) and wagon-type vehicles (AOR: 3.43; 95%CI 1.60–7.39). For serious head and neck

injury, truck-type vehicles were associated with greater risk (AOR: 2.04; 95% CI: 1.10– 3.79) than bonnet-type vehicles, whereas wagon-type vehicles were not. Compared with the occupants of bonnet-type vehicles, cab-over type vehicle occupants were more likely to have serious pelvis and extremities injury during frontal collisions. Additionally, trucktype vehicle occupants were more likely to have serious head and neck injury than bonnettype vehicle occupants.

Conclusion:

These findings are expected to promote safer behaviors for vehicle occupants and the automobile industry.

Introduction

Road traffic accidents constitute a leading global cause of human fatalities and injury. Globally, the number of road traffic deaths is ~1.25 million per year. According to the Global Status Report on Road Safety 2015, published by the World Health Organization [1], road traffic injuries are the number one cause of death among 15–29 year-old individuals. One possible determinant of road traffic injury fatality is vehicle configuration, which can be classified as bonnet or cab-over type according to the engine location (Fig 1 and S1 Fig). Compared with that in bonnet-type vehicles, the front compartment of cab-over type vehicles are considerably shorter; thus, they may be less likely to absorb the energy generated in a collision, and in turn, less likely to prevent deformation of the occupant space and protect front occupants from injury. However, despite the widespread use of both vehicle types, evidence with regard to whether vehicle configuration is related to severe injury remains scarce.

Previous studies have reported that the cab-over type configuration is associated with a higher likelihood of severe anatomical injury [2,3]. A study from Korea reported that cabover type vehicles are associated with more severe lower limb and abdominal injuries than bonnet-type vehicles [2]. However, this finding is confounded by the accident vehicles' speed and the weights of the collided objects. Another study from Japan reported that the proportions of severe anatomical injuries differed among the vehicle occupants of cab-over and bonnet-type vehicles [3]. However, in that study, the differences in characteristics other than the vehicle configuration were not considered. Therefore, it is unclear whether anatomical-specific severe injuries are affected by vehicle configuration when appropriate safety equipment are used (e.g., airbags and seatbelts).

In this study, we examined whether differences in vehicle configuration contribute to anatomical-specific severe injuries using an observational study design involving occupants injured in accidents in Fukushima, Japan (Reduction of Emergency and Death for Occupants of Collison Study [REDOCS]). The results of this study will allow car occupants to select safer vehicle types for purchase, and will assist the automobile industry in producing safer vehicle bodies.

Materials and methods

Study design and participants

This study was a retrospective observational study involving vehicle occupants injured in frontal collision vehicle accidents and transferred to Ohta Nishinouchi Hospital, a tertiary emergency medical facility that covers the medical care zone for approximately 500,000 residents around Koriyama, Fukushima Prefecture. The accidents occurred between January 2001 and December 2015. We restricted our study to those injured in frontal collision accidents based on the assumption that vehicle configuration significantly influences the severity of the occupants' injury only in frontal collisions. Further, only the occupants of mini-vehicles (Kei-car vehicles; defined as engine displacement ≤ 660 cc, vehicle length ≤ 3.4 m, width ≤ 1.48 m, and height ≤ 2.0 m according to the Japanese Road Transport Vehicle Act [4]) were considered. The minivehicle (Kei-car vehicle) is a vehicle class unique to Japan. This choice allowed us to minimize the influence of the vehicle size and weight on the occupants' injury severity. We considered that inclusion of vehicles other than mini-vehicles for our study is inappropriate to examine the association between vehicle configuration and the severity of the occupant' injury, as the vehicle size (i.e., volume) of those other than mini-vehicles is greatly variable and thus confounds such association. In addition, study on minivehicles is valuable because they are popular in Asia, especially in Japan [5]. We excluded occupants aged 16 years and under and occupants in rear seats.

Exposure

The main exposure in this study was vehicle configuration divided into bonnet-type and cabover type (Fig 1 and S1 Fig). Engines in bonnet-type vehicles are in front of the frontal seats, whereas engines in cab-over type vehicles are under the right frontal seat (driver's seat). The frontal compartment of a bonnet-type vehicle is longer than that of a cab-over type vehicle, owing to the different engine position. Cab-over type vehicles are subdivided into truck- and wagon-types. Truck-type vehicles have no rear seats and the back of the front seats is the loading platform. In contrast, wagon-type vehicles have rear seats.

Outcomes

The outcomes of this study present data on anatomical-specific severe injuries of the pelvis and extremities, the head and neck, the abdomen, and the chest based on vehicle type. Injury severity was assessed according to the Abbreviated Injury Scale (AIS) coding system of 1990 (revision update 98) based on medical records and radiographic findings [6]. The AIS scores ranged from zero to six (see S2 Table for details). All values were determined during hospital stay by a single well-trained trauma specialist and registered in medical records. We defined severe injuries as those with AIS = 3 or greater for each anatomical site.

Covariates

Covariates were selected if a variable was potentially correlated with the vehicle configuration and outcomes. We collected demographics (age and sex), seat position (right front—the driver's position in Japan—and left front), vehicle factors (seatbelt

(seatbelt use or not), frontal airbag deployment ("equipped and deployment," "equipped and non-deployment," or "not equipped"), vehicle weight determined by car model (see S1 Appendix for details), self-reported vehicle speed before collision, and collided object (static object, vehicle with weight < 1t, vehicle with weight $1t \le to < 2t$, or vehicle with weight $\le 2t$)). The category for vehicle weight in the collided object variable was determined based on the volume size of the vehicle (see S2 Appendix for details).

Statistical analysis

The baseline characteristics (i.e., age, sex, vehicle factors, and collided object) were described by the mean and standard deviation (SD) for continuous variables and by the number and proportion (%) for categorical variables.

To estimate the odds ratios for associations between the vehicle configuration and the anatomical-specific injury severity, we separately fitted generalized estimating equations for each outcome, considering the clustering of occupants in the same accident using a robust variance estimator.

For each outcome, we conducted primary and sensitivity analyses. In the primary analysis, we entered all covariates into the fitted model and any missing values were imputed through multiple imputations using chained equations methods, assuming that the analyzed data were missing at random. The missing values were imputed using the existing AIS and other covariates. Five imputations were conducted. In the sensitivity analysis, we entered all covariates except for those with 30% or more missing values (vehicle speed before collision and vehicle weight) into the fitted model and conducted complete case analyses.

All statistical analyses were conducted using Stata^{\Box} version 14.0 (Stata Corp LP, College Station, TX). *P* values < 0.05 (two-tailed) were taken as indicators of statistical

significance.

Ethical consideration

In this study, anonymized data collected during routine practice were used. Informed consent was not mandatory, according to the ethical guidelines for epidemiological research in Japan. The study protocol was approved by the institutional review board of Ohta Nishinouchi Hospital (No. 11), Kyoto University Graduate School of Medicine (R0708), and Fukushima Medical University, School of Medicine (ippan-29004). The study was conducted in accordance with the Declaration of Helsinki and the ethical guidelines for epidemiological research in Japan.

The datasets generated during and/or analyzed during the study are available from the corresponding author on reasonable request.

Results

Of the 1049 occupants who were transferred because of frontal collision accidents over the 15 years, 60 were under 16 years old and 46 were rear occupants; all of these were excluded. Therefore, 943 occupants were included in our analyses (Fig 2).

Table 1 lists the characteristics of the vehicle occupants in the study. Of the occupants, 73% were in bonnet-type vehicles, and 27% were in cab-over type vehicles. Among the cab-over type occupants, 17% were truck-type occupants and 10% were wagon-type occupants. The mean age was 45.4 years.

In total, 86% of the subjects were right frontal (driver's seat) occupants, 77% were belted, and 46% were in vehicles not equipped with airbags. The mean vehicle speed before collision was 45.1 km/h, and the mean vehicle weight was 805 kg. The proportion of

accidents in which one target occupant was transferred to the study facility was 95%. The proportions having anatomical-specific AIS = 3 or greater were 12%, 9%, 7%, and 15% for the pelvis and extremities, the head and neck, the abdomen, and the chest, respectively. Notably, the vehicle speed before collision and the vehicle weight had large proportions of missing values (56% and 28%, respectively).

The proportion of men in truck- and wagon-type vehicles was greater than that in bonnet-type vehicles. The bonnet-type vehicles had more frontal airbag equipment than the truck-type vehicles. The bonnet- and wagon-type vehicles had more frontal airbag deployments than truck-type vehicles.

The proportions of occupants in truck- and wagon-type vehicles with AIS = 3 or greater for the pelvis and extremities, the head and neck, and the chest, were higher than for the occupants of the bonnet-type vehicles.

Table 2, S1 Table, and Fig 3 show the associations between the vehicle type and the anatomical-site specific AIS = 3 or greater. Table 2 shows the associations with adjustments for all covariates using multiply imputed data (N = 943). S1 Table shows the associations without adjustments for any covariates (N=943). Fig 3. shows the associations with or without adjustments for those covariates. Compared with bonnet-type vehicles, a greater risk of serious pelvis and extremities injury was associated with both truck-type vehicles (adjusted odds ratio (AOR): 2.21; 95% Confidence Interval (95% CI): 1.22–4.00) and wagon-type (AOR: 3.43; 95% CI: 1.60–7.39). For serious head and neck injury, truck-type vehicles were associated with a greater risk (AOR: 2.04; 95% CI: 1.10–3.79) than bonnet-type vehicles, whereas wagon-type vehicles were not. For serious abdominal and chest injuries, cab-over type vehicles were not associated with greater risk than bonnet-type vehicles.

Table 3 shows the associations between the vehicle type and the anatomical-site specific

AIS = 3 or greater with the adjustment of covariates listed in Table 1, except for the vehicle speed before collision and the vehicle weight (N = 898). The directions and the magnitudes of the associations are similar to those presented in Table 2.

Discussion

The results of this study show that occupants of cab-over vehicles (i.e., truck- and wagon-type vehicles) are more likely to have serious pelvis and extremities injury than bonnet-type vehicle occupants. These findings are expected to encourage vehicle occupants and the automobile industry to consider objective facts about safety during frontal collisions and to change their behaviors accordingly.

Our findings concur to some degree with the results of previous studies. A previous study from Japan reported that the proportion of severe injuries among cab-over type vehicle occupants was higher than that for bonnet-type vehicle occupants. These severe injuries were observed not only in the pelvis and extremities, but also in the head and neck, abdomen, and chest regions [3]. For example, the proportions of occupants having AIS \geq 3 (i.e., severe injury defined similarly to our study) among cab-over type and bonnet-type occupants were 13.6% vs. 5.6%, 6.0% vs. 3.4%, and 11.9% vs. 8.5% for the pelvis and extremities, the abdomen, and the chest, respectively. However, their results were not adjusted for confounding factors such as seat belt use and airbag deployment. In our study, the proportions of occupants in vehicles not equipped with airbags were higher for the cab-over type than for the bonnet-type (Table 1). The lack of adjustment for airbag equipment in the previous study likely explains the differences in the results, with the proportions suffering from severe injuries of the abdomen and the chest being overestimated (Fig 3). In addition, the previous study failed to divide the cab-over type into truck- and wagon-type. However, by separating the truck-type from the wagon-type, we were able to show the magnitude of the association between truck-type (vs. bonnettype) and severe injury of the head and neck differs from that of the association between wagon-type (vs. bonnet-type) and the severe injury.

Another study from Korea reported that the cab-over type was associated with more severe lower limb and abdominal injuries than the bonnet-type (AOR: 4.820 and 2.465, respectively) [2]. However, the associations in the study may have been confounded by the accident vehicle speed and the weights of the collided objects, and thus the magnitude of the associations may be overestimated. In our study, the proportions of collided objects in the heaviest weight category (2t≤weight) were higher among cab-over type vehicles than with bonnet-type vehicles (Table 1); therefore, the failure of adjustment for the collided objects in the previous study could have resulted in apparently stronger associations between the cab-over type and severe injury.

More importantly, the proportions of the cab-over vehicles deploying airbags were lower than those of the bonnet-type vehicles in the present study (Table 1). However, discrimination based on airbag status (i.e., whether "a vehicle is equipped with airbag but is not deployed" or "a vehicle is not equipped with airbag") was not made in the previous study. As "Equipment and deployment of airbags" is a strong preventive factor for severe injury and death [7,8], this distinction and adjustment in the multivariable analysis is crucial. Thus, the stronger magnitude of the association between the cab-over type vehicles and severe injury in the Korean study than that in the present study may be explained by the potential dominance of vehicles not equipped with airbags in the cabover group. We believe that our findings provide more robust results than those provided by the previous studies because we adjusted all important confounding variables. Finally, previous studies limited the cab-over type to the truck-type; the wagon-type was not examined in the Korean study. The inclusion of wagon-type vehicles is of greater importance, because wagon-type vehicles having occupants is more common than trucktype vehicles [9].

Some potential mechanistic reasons can explain our findings on severe injuries of the pelvis and extremities and the head and neck. First, the greater likelihood of having severe injuries of the pelvis and extremities among the cab-over type than among the bonnettype could be attributed to the absence of the crash energy absorbing compartment in the cab-over type vehicles. The crash energy absorbing compartment of the bonnet lessens the energy generated in the event of a crash by denting; thereby, preventing deformation of the occupant space and injuries to the front occupants. The size of the crash energy absorbing compartment of cab-over type vehicles is much smaller than that of bonnettype vehicles, because the engine is located under the driver's seat. In addition, some bonnet-type vehicles contain shock-absorbing materials in the bonnet space. Second, the greater likelihood of having severe head and neck injuries among the truck-type than those among the wagon- and bonnet-type vehicles may be attributable to the absence of a wall just behind the seat in the truck-type vehicles. The frontal seats of truck-type vehicles cannot move backward because of the wall (Fig 4); therefore, the heads of trucktype vehicle occupants are positioned further forward than those of wagon- and bonnettype vehicle occupants. For this reason, truck-type vehicle occupants are more likely to move upwards with relation to the seatbelt rather than downwards at the time of a collision.

Compared with bonnet-type vehicles, greater risks of serious chest and abdominal injury associated with cab-over-type vehicles were not observed. The chest and abdomen are protected by airbags and seat belts and thus those of cab-over type vehicle occupants do not positioned further forward than those of bonnet-type vehicle occupants.

Our study has several strengths. First, our findings are derived from a large sample size, with analyses adjusted according to several important confounding factors (i.e., seatbelt, frontal airbag deployment, vehicle weight, self-reported vehicle speed before collision, and weights of the collided objects). Second, we obtained data not only for truck-type vehicles but also for wagon-type ones. Third, to mitigate the potential effects of the vehicle weight and vehicle size on severe injuries, our analyses focused on the occupants of mini-vehicles. Larger vehicles (e.g., passenger vehicles and SUVs) than mini-vehicles have greater variations in vehicle volume; thus, the effects of frontal shape may be greatly confounded by vehicle volume if we include the larger vehicles in the present analyses. In fact, mini-vehicles have become increasingly popular because they are convenient to drive and have economic benefits, including low purchase price, low tax, and good fuel economy. In 2017, mini-vehicles has spread worldwide. Both the importation of mini-vehicles are increasing among other countries in South Asia, East Asia, and Southeast Asia.

Our results have several implications for the public, medical personnel, and the automobile industry. First, our findings provide consumer safety information for the selection of vehicle type during vehicle purchase. Previous studies of vehicle preference among United States teenagers revealed that priority is given to vehicle price; thus, minivehicles, small vehicles, and/or old vehicles were preferred [10,11]. Many mini-vehicles adopt cab-over configurations to expand the internal space. The notification of the relatively higher risks associated with the cab-over vehicles than those with the bonnettype vehicles could change consumer choices. Second, our findings may be applicable to pre-hospital settings for patient transfer. If an accident vehicle is a cab-over type, an ambulance crew can predict that the occupant may have severe internal injuries (e.g., pelvic injury) even if his/her external trauma does not seem to be severe; then, the crew can place a high priority on transferring the occupant to a level I trauma center. Third, our findings should encourage the automobile industry to invest in greater safety technology for cab-over vehicles. In Japan, all cab-over vehicle models must pass crash safety tests prior to sale. However, our results clearly show that cab-over vehicles are disadvantages relative to bonnet-type vehicles in frontal collisions, despite them passing the crash safety

tests.

This study had several limitations. First, our findings are applicable only for minivehicles, they may not be generalizable to larger-sized vehicles. Further study is warranted to examine whether or not vehicle configuration is associated with severe injury for standard-sized vehicles. Second, our study setting was based on a tertiary emergency medical facility; this may give a skewed sample of patients in terms of injury severity. In general, patients with severe injuries are more likely to be transferred to tertiary emergency facilities; patients with slight injuries are less likely to be transported to such facility. Thus, proportions of severe injuries at a hospital will be higher than those seen at accident sites. However, we believe that associations between vehicle configuration and severe injuries are unlikely to be severely biased because the selection of patients transported to the hospital was determined by injury severity and irrespective of vehicle type at present. Third, the values of some covariates may be proxies. The velocity right before a collision is a self-reported measure. Regarding the vehicle weight, the values were based on standard equipment without consideration of the weights of occupants or cargo. Fourth, we were not able to collect the following variables in this study: driver's factors such as fatigue, fainting, and aggressive driving behavior; roadway factors such as light traffic, number of lanes, and hourly traffic volume; temporal factors such as traffic jam time, night, and weekend; environmental factors such as rain, snow, wet road surface, snow road surface, ice road surface, and fog, and oncoming vehicle speed before the collision [12–14]. While these variables are potential predictors of severe injuries, they do not necessarily meet the criteria for confounding in this study according to the classical epidemiologic framework. They do affect injury severity; however, they do so irrespective of the vehicle configuration in this study (i.e., these variables could not logically be used to determine the likelihood of a vehicle being cab-over type rather than bonnet-type). Further study is warranted to determine whether adjustment of these variables can alter the associations between vehicle configuration and injury severity

examined in this study. Fifth, severities of the upper extremities, lower extremities, and pelvis were not analyzed separately. Only the most severe AIS score in the extremities and pelvis to calculate the ISS was recorded in our database. Our retrospective study design allowed us to obtain only this AIS score.

Conclusions

This study found that occupants of cab-over mini-vehicle (i.e., truck- and wagon-type vehicles) occupants are more likely to have severe pelvis and extremities injury than bonnet-type mini-vehicle occupants during frontal collisions. In addition, truck-type mini-vehicle occupants are more likely to have severe head and neck injury than bonnet-type mini-vehicle occupants. Further study is required to determine if these findings extend to larger-sized vehicles.

Funding

This study was supported by a Grant for Research Support of Fukushima Medical University. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests

The authors have declared that no competing interests exist.

References

1. World Health Organization. The Global Status Report on Road Safety 2015. 2015.

http://www.who.int/violence injury prevention/road safety status/2015/en/

from:

- Jeon HJ, Kim SC, Shin J, Jung JY, Lee KH, Lee HY, et al. Risk of serious injury of occupants involved in frontal crashes of cab-over-type trucks. Traffic Inj Prev. 2017; 18(8): 839–844. https://doi.org/10.1080/15389588.2017.1315413 PMID: 28384074
- Shinohara K. The difference of passengers severity between the type of the vehicle. Japanese Journal of Acute Medicine. 2010; 34: 557–560 (in Japanese).
- 4. Ministry of Land, Infrastructure and Transport. Road Transport Vehicle Act. 2017. Available from: http:// elaws.egov.go.jp/search/elawsSearch/elaws_search/lsg0500/detail?lawId=326M500008000 74 #1869 (in Japanese).
- Japan Light Motor Vehicle and Motorcycle Association. Trends in vehicle ownership by vehicle type. 2018. Available from: http://www.zenkeijikyo.or.jp/statistics/4own (in Japanese).
- The Japanese Association for The Surgery of Trauma. Japan Automobile Research Institute. The Abbreviated Injury Scale 1990 Revision Update 1998. Herusu Shuppan; 2003 (in Japanese).
- Braver ER, Ferguson SA, Greene MA, Lund AK. Reductions in deaths in frontal crashes among right front passengers in vehicles equipped with passenger air bags. Jama. 1997; 278(17): 1437–1439. PMID: 9356003
- Siegel JH, Loo G, Dischinger PC, Burgess AR, Wang SC, Schneider LW, et al. Factors influencing the patterns of injuries and outcomes in car versus car crashes compared to sport utility, van, or pick-up truck versus car crashes: Crash Injury Research Engineering Network Study. J Trauma. 2001; 51(5): 975–990.

https://doi.org/10.1097/00005373-200111000-00024 PMID: 11706349

- Japan Light Motor Vehicle and Motorcycle Association. Trends in new car sales volume by year and vehicle type in mini vehicles. 2018. Available from: http://www.zenkeijikyo.or.jp/statistics/4newnendosui (in Japanese).
- Hellinga LA, McCartt AT, Haire ER. Choice of teenagers' vehicles and views on vehicle safety: survey of parents of novice teenage drivers. J Safety Res. 2007; 38(6): 707–713. https://doi.org/10.1016/j.jsr. 2007.10.003 PMID: 18054603
- Eichelberger AH, Teoh ER, McCartt AT. Vehicle choices for teenage drivers: A national survey of U.S. parents. J Safety Res. 2015; 55: 1–5. https://doi.org/10.1016/j.jsr.2015.07.006 PMID: 26683541
- Chen F, Chen S. Injury severities of truck drivers in single- and multi-vehicle accidents on rural highways. Accid Anal Prev. 2011; 43(5):1677–88. https://doi.org/10.1016/j.aap.2011.03.026 PMID: 21658494
- Chen F, Chen S, Ma X. Analysis of hourly crash likelihood using unbalanced panel data mixed logit model and real-time driving environmental big data. J Safety Res. 2018; 65:153–9. https://doi.org/10. 1016/j.jsr.2018.02.010 PMID: 29776524
- Ma C, Hao W, Xiang W, Yan W. The impact of aggressive driving behavior on driverinjury severity at highway-rail grade crossings accidents. Journal of Advanced Transportation. 2018; 2018:1–10.

	Cab-over type		Bonnet-type	Total
	Truck	Wagon		
	N = 159	N = 92	N = 692	N = 943
Age, years	58.7 (17.3)	54.5 (16.7)	41.2 (19.3)	45.4 (20.1)
Gender (as % Men)	74%	75%	43%	51%
Seat position				
Right frontal (driver's seat)	87%	86%	86%	86%
Left frontal	13%	14%	14%	14%
Seat belts				
Belted	76%	79%	77%	77%
Missing	6	2	20	28
Airbag				
Equipped and deployment	17%	42%	47%	42%
Equipped and non- deployment	3%	4%	15%	12%

Table 1. Characteristics of the vehicle occupants.

Not equipped	80%	54%	38%	46%
Missing	7	3	18	28
Characteristics of object collided with				
Static object	25%	33%	23%	25%
Vehicle weight < 1t	11%	13%	17%	16%
$1t \le Vehicle weight < 2t$	44%	33%	42%	44%
$2t \leq Vehicle weight$	20%	17%	13%	15%
Missing	1	0	2	3
Vehicle speed before collision, km/h	40.7 (16.6)	46.1 (15.9)	45.9 (16.1)	45.1 (16.2)
Missing	97	56	378	531
Vehicle weight, kg	741 (30.5)	911 (70.7)	798 (77.7)	805 (83.1)
Missing	127	33	106	266
Accident in which occupants simultaneously transferred to study facility				

1 occupant	93%	98%	95%	95%
2 occupants	7%	2%	5%	5%
Occupants with anatomical- specific AIS ≥ 3				
Pelvis and Extremities	19%	26%	9%	12%
Head and Neck	16%	13%	7%	9%
Abdomen	11%	9%	6%	7%
Chest	23%	21%	13%	15%

Mean (standard deviation) is shown for continuous data; otherwise, percentage is shown for categorical data.

Table 2. Associations between vehicle type and ana	tomical-site specific severe injury
(AIS 3 or greater).	

	Bonnet-type	Cab-over type			
		Truck		V	Vagon
Specific anatomical site		AOR	95% CI	AOR	95%CI
Pelvis and Extremities	Ref.	2.21	1.22-4.00	3.43	1.60-7.39
Head and Neck	Ref.	2.04	1.10–3.79	1.39	0.55-3.52
Abdomen	Ref.	1.59	0.77-3.26	0.62	0.22–1.72
Chest	Ref.	1.57	0.91–2.70	1.51	0.68–3.36

Abbreviation: Ref., reference; AOR, adjusted odds ratio; 95% CI, 95% confidence interval; AIS, Abbreviated Injury Scale (AIS).

Using multiply imputed data, generalized estimating equations were fitted to estimate the odds ratios for each anatomical specific AIS, considering the clustering of occupants in the same vehicle, with adjustment for age, sex, wearing a seatbelt, airbag deployment, weight of object collided with, vehicle speed before collision, and vehicle weight.

The numbers in bold have a significant difference.

 Table 3. Associations between vehicle type and anatomical-site specific severe injury

 (AIS 3 or greater) without adjustment for vehicle speed before collision and vehicle

 weight.

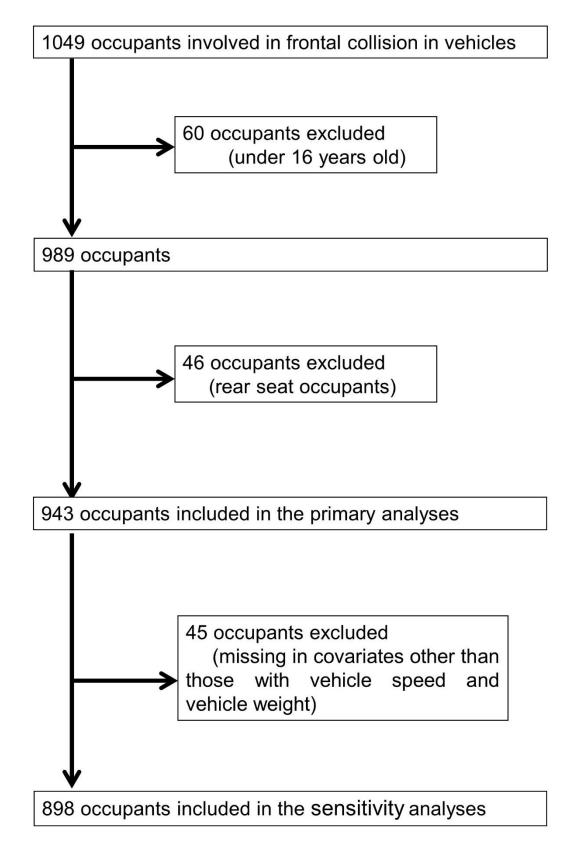
	Bonnet-type		Cab-over type			
		Truck		Truck Wagon		
Specific anatomical site		AOR	95% CI	AOR	95%CI	
Pelvis and Extremities	Ref.	2.06	1.15-3.68	3.79	2.03-7.03	
Head and Neck	Ref.	1.95	1.05-3.65	1.27	0.57–2.82	
Abdomen	Ref.	1.89	0.96–3.74	0.93	0.38–2.28	
Chest	Ref.	1.32	0.77–2.25	1.14	0.59–2.23	

Abbreviation: Ref., reference; AOR, adjusted odds ratio; 95% CI, 95% confidence interval; AIS, Abbreviated Injury Scale (AIS).

Using complete data with regard to all covariates except for vehicle speed before collision and vehicle weight, generalized estimating equations were fitted to estimate the odds ratios for each anatomical specific AIS, considering the clustering of occupants in the same vehicle, with adjustment for age, sex, wearing a seatbelt, airbag deployment, and weight of object collided with.

The numbers in bold have a significant difference.

Figure 1. Vehicle configuration.



Truck-type vehicle Wagon-type vehicle

Cab-over type vehicle (Engine under the driver's seat)

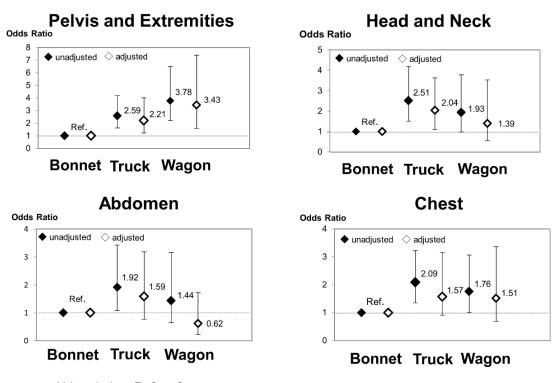
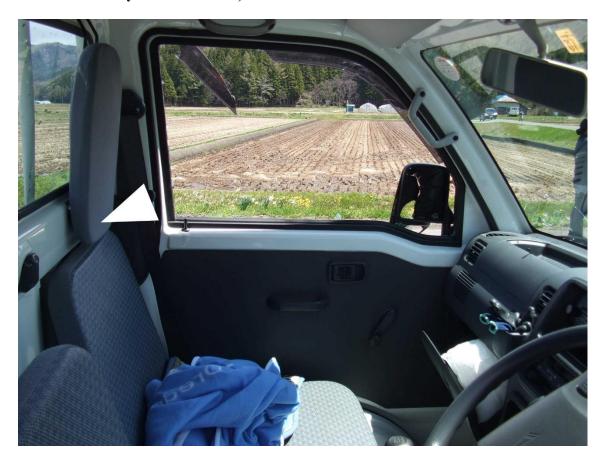

Bonnet-type vehicle (Engine before the driver's seat)

Figure 2. Flow chart of the study participant selection.


Figure 3. Association between the vehicle type anatomical-site specific AIS that is≥3.

Using multiply imputed data, generalized estimating equations were fitted to estimate the odds ratios for each anatomical specific Abbreviated Injury Scale (AIS), considering the clustering of occupants in the same vehicle with or without adjustment for age, sex, seat position, wearing a seatbelt, airbag deployment, weight of object collided with, vehicle speed before collision, and vehicle weight.

Abbreviation: Ref., reference

Figure 4. Seats of truck-type vehicles (the presence of a wall immediately behind the seats is shown by the arrowhead).

Supporting information

S1 Figure. Vehicle configuration.

Truck-type vehicle Wagon-type vehicle

Cab-over type vehicle (Engine under the driver's seat)

Bonnet-type vehicle (Engine before the driver's seat)

S1 Appendix. Calculation of vehicle weight.

The vehicle weight used in this study was the average weight of the car model from the first year of production to the year of the accident.

For example, for a vehicle model that collided in 2007 and which was first marketed for sale in 2001, the average weight was calculated for that car model for the period between 2001 and 2007.

The weights of particular car models were extracted from the Cars Japan website [1]

Reference

1. Anonymous. Cars Japan: Cars Japan. 2018. Available from: <u>https://cars-japan.net/body/index.html</u>.

S2 Appendix. Classification of collided objects.

Four categories of collided objects were defined: vehicle with weights of $\ge 2t$; vehicle with weights of $1t \le to < 2t$; vehicles with weights of < 1t; and static objects.

Vehicles with weights of <1t corresponded to a mini vehicle (defined as engine displacement ≤ 660 cc, vehicle length ≤ 3.4 m, width ≤ 1.48 m, and height ≤ 2.0 m according to the Japanese Road Transport Vehicle Act [1] The vehicle weights of almost all the mini vehicles in our database were under 1t.

Vehicles with weights of $\geq 2t$ corresponded to trucks with a weight of 2 t or more, buses, and trailers. The weights of the trucks are registered in the database.

The vehicles with weights of $1t \le to < 2t$ corresponded to all vehicles classified as neither 'Vehicle with weight <1t' nor 'Vehicle with weight $\ge 2t'$ (e.g., the 'futsu-jidosha' and the 'futsu-truck').

The collided objects that did not move were classified as static objects.

Reference

 1. Road Transport Vehicle Act
 [Available from: <u>http://elaws.e-gov.go.jp/search/elawsSearch/elaws_search/lsg0500/detail?lawId=326M50000800074#</u>

 1869.

	Bonnet-type	Cab-over type			
]	Fruck	W	⁷ agon
Specific anatomical site		OR	95%CI	OR	95%CI
Pelvis and Extremities	Ref.	2.59	1.61 - 4.17	3.78	2.21 - 6.49
Head and Neck	Ref.	2.51	1.51 - 4.18	1.93	0.98 - 3.78
Abdomen	Ref.	1.92	1.08 - 3.43	1.44	0.65 - 3.16
Chest	Ref.	2.09	1.35 - 3.22	1.76	1.01 - 3.06

S1 Table. Associations between vehicle type and anatomical-site specific AIS or more.

Abbreviation: Ref., reference; AOR, adjusted odds ratio; 95% CI, 95% confidence intervals

No adjustment for covariates, while considering the clustering of occupants in the same vehicle. Generalized estimating equations are fitted to estimate the odds ratios for each anatomical specific AIS.

The numbers in **bold** show a significant difference.

AIS	スコア	1	2	3	4	5	6
< 9	頁頚部 >						
頭蓋	蓋骨		単純骨折	頭蓋底骨折	複雑骨折		頭蓋骨および脳
				陥没骨折≦2cm	陥没骨折≧2cm		の広範囲損傷
硬腿	莫外/硬膜下血腫				≦50ml、≦1cm	>50ml、>1cm	(挫滅)
						両側	
<刖	匈部 >						
肺	挫傷			片側	両側		骨格、血管、臓
	裂傷(片側)			縦隔気腫あり	縦隔血腫あり	緊張性気胸あり	器、組織系すべ
					縦隔気腫また		ての両側性高
	裂傷(両側)				縦隔気産また は縦隔血腫あり	緊張性気胸あり	度損傷(挫滅
					は飛行問題題のり		損傷)
肋帽	骨骨折	1本	2-3本	≧片側4本	≧両側4本		
8	⊢血/気胸			1-3本	≧片側4本	≧両側4本	
71	-イルチェスト			肺挫傷なし	肺挫傷あり	両側	
<唐	复部 >						
肝	挫傷		被膜下≦50%	被膜下 > 50%			肝断裂(肝血管
	裂傷		≦3cm	>3cm	>3cm(多数)	複雑性	系の完全分離)
脾	挫傷		被膜下≦50%	被膜下 > 50%			
	裂傷		≦3cm	>3cm	血管損傷	脾門部損傷	
膵	挫傷		軽度	高度			
	裂傷		軽度	中等度	高度・膨大部	複雑性	
			膵管損傷なし	膵管損傷あり			
腎	裂傷		≦1cm	>1cm	腎杯・腎盂	腎茎部	
				溢尿なし	血管損傷		
I	二指腸			下行脚損傷	下行脚損傷	複雑性	
Τ-	_1日/笏		挫傷・血腫	1/2-3/4周	3/4周以上	假細性	
			漿膜損傷	1/2-全周	膨大部・総胆管		
小服	易・結腸		挫傷・血腫	穿孔	裂傷		
< 🛛	∃肢・骨盤>						
					血管断裂また		
骨盘	ф Я		非開放性骨折	開放・粉砕骨折	は後腹膜大量	出血量>20%	
					血腫		
大服	退骨			骨折			
上服	宛・前腕		非開放性骨折	開放·粉砕骨折			

S2 Table. Excerpt of detailed corresponding injuries to score AIS (in Japanese)